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1 Simulation

Simulation of CCT.

1 # For multivariate normal generation
2 library(MASS)
3 # Define the T(X) function with omega = 1/d
4 compute_T <- function(X) {
5 T_val <- mean(tan((2 * pnorm(abs(X)) - 3/2) * pi))
6 return(T_val)
7 }
8

9 # Function to generate the AR(1) correlation matrix
10 generate_ar_matrix <- function(rho , d) {
11 #using outer
12 Sigma <- outer (1:d, 1:d, function(i, j) rho^abs(i - j))
13 return(Sigma)
14 }
15

16 # Set parameters
17 d_values <- c(5, 20, 50, 100, 300, 500) # Different dimensionalities
18 rho_values <- c(0.2, 0.4, 0.6, 0.8, 0.99) # Different values of rho
19 alpha_values <- c(0.1, 0.01, 0.001) # Different alpha levels
20 n_samples <- 10^5 # Number of Monte Carlo samples
21

22 # Loop through each combination of d, rho , and alpha
23 results <- data.frame()
24 set.seed (2024)
25 use_time <- system.time({
26 for (d in d_values) {
27 for (rho in rho_values) {
28 # Generate the AR(1) correlation matrix for this rho and d
29 Sigma <- generate_ar_matrix(rho , d)
30

31 # Generate Monte Carlo samples
32 X_matrix <- mvrnorm(n = n_samples , mu = rep(0, d), Sigma = Sigma)
33

34 # Compute T(X) for each sample (each row of X_matrix)
35 T_vals <- apply(X_matrix , 1, compute_T)
36

37 for (alpha in alpha_values) {
38 # Calculate the upper alpha -quantile of the standard Cauchy distribution
39 t_alpha <- qcauchy(alpha ,lower.tail = FALSE) # Upper alpha -quantile of the standard

Cauchy
40

41 # Calculate the empirical probability
42 P_empirical <- mean(T_vals > t_alpha)
43

44 # Store the results
45 results <- rbind(results , data.frame(d = d, rho = rho , alpha = alpha , P = P_empirical))
46 }
47 }
48 }
49 })
50 # Print the time taken
51 print(use_time)
52 user system elapsed
53 57.234 4.470 46.920
54 # Display results
55 library(dplyr)
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56 library(ggplot2)
57 library(magrittr)
58 results %>%
59 mutate(
60 ratio=P/alpha ,
61 alpha=factor(alpha ,levels=c(0.1 ,0.01 ,0.001))
62 ) %>%
63 ggplot(aes(x=alpha ,y=ratio))+
64 geom_boxplot ()+
65 theme_minimal ()+
66 xlab("Significance level")+
67 ylab("(Emprical size)/(Significance level)")

Figure 1: The ratio of empirical size to significance level summarized by boxplots

2 Exercises

Question 1. A special case of a normal family is one in which the mean and the variance are related, the
N(θ, aθ) family. If we are interested in testing this relationship, regardless of the value of θ, we are again
faced with a nuisance parameter problem.

a) Find the LRT of H0 : a = 1 versus H1 : a ∕= 1 based on a sample X1, . . . , Xn from a N(θ, aθ) family,
where θ is unknown.

b) A similar question can be asked about a related family, the N
󰀃
θ, aθ2

󰀄
family. Thus, if X1, . . . , Xn are

iid N
󰀃
θ, aθ2

󰀄
, where θ is unknown, find the LRT of H0 : a = 1 versus H1 : a ∕= 1

Solution:

We first determine the maximum likelihood estimators (MLE) under both unrestricted and restricted condi-
tions. Beginning with the unrestricted case, the likelihood function of (θ, a) is given by:

L(θ, a) = (2πaθ)−
n
2 exp

󰀫
− 1

2aθ

n󰁛

i=1

(xi − θ)2

󰀬
,

and the corresponding log-likelihood function is:

logL(θ, a) = −n

2
log(2πaθ)− 1

2aθ

n󰁛

i=1

(xi − θ)2
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= −n

2
log(2πaθ)− 1

2aθ

󰀣
n󰁛

i=1

(xi − θ)2 +

n󰁛

i=1

(x̄− θ)2

󰀤
let T =

n󰁛

i=1

(xi − x̄)2

= −n

2
log(2πaθ)− 1

2aθ

󰀃
T + n(x̄− θ)2

󰀄

To obtain the MLE in the unrestricted case, we take partial derivatives of the log-likelihood function with respect
to a and θ and set them to zero.

∂ logL(θ, a)

∂a
=− n

2a
+

T + n(x̄− θ)2

2θa2
set
= 0 (1)

∂ logL(θ, a)

∂θ
=− n

2θ
− 1

2aθ2
(T + n(x̄− θ)2 + 2nθ(x̄− θ))

set
= 0 (2)

From the equation (1), we solve for a:

a =
T + n(x̄− θ)2

nθ
=

σ̂2 + (x̄− θ)2

θ
.

Substituting this into the equation (2) simplifies to:

∂ logL(θ, a)

∂θ
= − n

2θ
− 1

2aθ2
(naθ + 2nθ(x̄− θ))

=
naθ − naθ − 2nθ(x̄− θ)

2aθ2
= 0,

This implies θ̂MLE = x̄ and âMLE = σ̂2

x̄ in the unrestricted case.
For the restricted case where a = 1, we differentiate the log-likelihood function with respect to θ:

∂ logL(θ)

∂θ
=

∂

∂θ

󰀕
−n

2
log θ − 1

2θ
(T + n(x̄− θ)2)

󰀖

= − n

2θ
− 1

2θ2
󰀃
T + n(x̄− θ)2 + 2nθ(x̄− θ)

󰀄

=
−θ2 − θ +

󰀃
T
n + x̄

󰀄

2nθ2
set
= 0.

Since θ > 0, we have θ̂0 =
−1+

√
1+4(σ̂2+x̄2)

2 . (To verify that these are indeed maxima, we need to check the Hessian
matrix. However, due to the large calculations, we will omit the details here). The likelihood ratio test (LRT)
statistic is given by:

λ(x) =
L(θ̂MLE , âMLE |x)
L(θ̂0, a = 1|x)

=
(2πθ̂MLE âMLE)

−n
2 exp

󰁱
− 1

2θ̂MLE âMLE

󰁓
i=1(xi − θ̂MLE)

2
󰁲

(2πθ̂0)
−n

2 exp
󰁱
− 1

2θ̂0

󰁓
i=1(xi − θ̂0)2

󰁲

=

󰀣
θ̂0
σ̂2

󰀤n
2

exp

󰀫
−n

2
+

1

2θ̂0

n󰁛

i=1

(xi − θ̂0)
2

󰀬
.

With the same steps above, the log likelihood function of model N(θ, aθ2) is

logL(θ, a|x) = −n

2
log 2πaθ2 − 1

2aθ2

n󰁛

i=1

(xi − θ)2

Thus

∂ logL(θ, a)

∂a
=− n

2a
+

󰁓n
i=1(xi − θ)2

2θ2a2
set
= 0 (3)

∂ logL(θ, a)

∂θ
=− n

θ
+

󰁓n
i=1(xi − θ)2

aθ3
+

nx̄− nθ

aθ2
set
= 0 (4)
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Solving equation (3) we get

a =

󰁓n
i=1(xi − θ)2

nθ2
.

Again, substitute it into equation (4) to get

∂ logL(θ, a)

∂θ
=

nx̄− nθ
󰁓n

i=1(x1−θ)2

n

set
= 0

which implies that θ̂ = x̄ then â = σ̂2

x̄2 (Again, it is tedious to operate large calculations to verify it is indeed
maxima, so we omit the details here). Under the null hypothesis,

∂ logL(θ|x)
∂θ

= −n

θ
+

󰁓n
i=1(xi − θ)2

θ3
+

nx̄− nθ

θ2

=
−θ2 + σ̂2 + x̄2 − x̄θ

θ3/n

set
= 0

which have two solutions θ1 = −x̄+
√
5x̄2+4σ̂2

2 and θ2 = −x̄−
√
5x̄2+4σ̂2

2 . In the interval (−∞, θ2], logL(θ|x) is
monotonic decreasing, while in [θ2, θ1] it is monotonic increasing, and in [θ1,+∞) it is monotonic decreasing

again. Note that limθ→−∞ logL(θ|x) = −∞, so the maximum occurs at θ = θ1. Therefore, the estimate of θ̂0 is,

θ̂0 =
−x̄+

√
5x̄2+4σ̂2

2 . So, the LRT is

λ(x) =
L(θ̂, â|x)

L(θ̂0, a = 1|x)
=

󰀣
θ̂0
σ̂

󰀤2

exp

󰀫
−n

2
+

1

2θ̂0

n󰁛

i=1

(xi − θ̂0)
2

󰀬
.

Question 2. Let X1, X2 be iid uniform (θ, θ + 1). For testing H0 : θ = 0 versus H1 : θ > 0, we have two
competing tests:

φ1 (X1) : Reject H0 if X1 > .95

φ2 (X1, X2) : Reject H0 if X1 +X2 > C

a) Find the value of C so that φ2 has the same size as φ1.

b) Calculate the power function of each test. Draw a well-labeled graph of each power function.

c) Prove or disprove: φ2 is a more powerful test than φ1.

d) Show how to get a test that has the same size but is more powerful than φ2.

Solution:

We first derive the power function for the tests φ1 and φ2, respectively. For φ1, the power function is given by

β1(θ) = Pθ(X1 > 0.95)

= 1− Pθ(X1 ≤ 0.95)

= 1− P (X1 − θ ≤ 0.95− θ)

= 1− P (U ≤ 0.95− θ),

where U follows a standard uniform distribution.Thus,

β1(θ) =1−

󰀻
󰁁󰀿

󰁁󰀽

0, 0.95− θ < 0;

0.95− θ, 0 ≤ 0.95− θ ≤ 1;

1, 0.95− θ > 1.

=

󰀻
󰁁󰀿

󰁁󰀽

0, θ < −0.05;

θ + 0.05, −0.05 ≤ θ ≤ 0.95;

1, θ > 0.95.

For φ2, the power function is:

β2(θ) = Pθ(X1 +X2 > C) (5)
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Figure 2: Power of φ1 and φ2

=

󰁝

x1+x2>C
1θ≤x1≤θ+11θ≤x2≤θ+1dx1dx2 (6)

=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

1, c ≤ 2θ;

1− (c−2θ)2

2 , 2θ < c < 2θ + 1;
(2θ+2−c)2

2 , 2θ + 1 ≤ c ≤ 2θ + 2;
0, c 󰃍 2θ + 2.

(7)

To find the critical value C, we set θ = 0 in equation (7):

β2(0) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

1, c ≤ 0;

1− c2

2 , 0 < c < 1;
(2−c)2

2 , 1 ≤ c ≤ 2;
0, c 󰃍 2.

Since β2(0) is monotonic decreasing in C, we solve for C such that β2(0) = β1(0) = 0.05, giving C = 2− 1√
10

≈ 1.68.

The power curves for both tests are shown in Figure 2. From this figure, we observe that both φ1 and φ2

control the type-I error well. Test φ1 is more powerful than φ2 for values of θ near 0, while φ2 becomes more
powerful for larger values of θ.

Additionally, we note that X1 > 1 and X2 > 1 occur with probability 0 under the null hypothesis. Therefore,
if X1 > 1 or X2 > 1, we can conclude that θ > 0. Based on this, we construct a new test, φ3, as follows:

φ3(X1, X2) : Reject H0 if X1 > 1 or X2 > 1 or X1 +X2 > C.

φ3 is a test of size 0.05 since

0.05 = Pθ=0(X1 +X2 > C) <Pθ=0(X1 > 1 or X2 > 1 or X1 +X2 > C)

<Pθ=0(X1 > 1) + Pθ=0(X2 > 1) + Pθ=0(X1 +X2 > C)

=Pθ=0(X1 +X2 > C) X1 > 1 and X2 > 1 are events with probability 0

=0.05

And clearly more powerful than φ2.
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Question 3. One very striking abuse of α levels is to choose them after seeing the data and to choose them
in such a way as to force rejection (or acceptance) of a null hypothesis. To see what the true Type I and
Type II Error probabilities of such a procedure are, calculate size and power of the following two trivial
tests:

a) Always reject H0, no matter what data are obtained (equivalent to the practice of choosing the α
level to force rejection of H0 ).

b) Always accept H0, no matter what data are obtained (equivalent to the practice of choosing the α
level to force acceptance of H0 ).

Solution:

If we always reject H0, then

Size = P (reject H0|H0 is true) = 1;

Power = P (reject H0|H0 is false) = 1

So we have type-I error 1 but type-II error 0.
If we always accept H0, then

Size = P (reject H0|H0 is true) = 0;

Power = P (reject H0|H0 is false) = 0

So we have type-I error 0 but type-II error 1.

Question 4. Let X be a random variable whose pmf under H0 and H1 is given by

x 1 2 3 4 5 6 7
f (x | H0) .01 .01 .01 .01 .01 .01 .94
f (x | H1) .06 .05 .04 .03 .02 .01 .79

Use the Neyman-Pearson Lemma to find the most powerful test for H0 versus H1 with size α = .04.
Compute the probability of Type II Error for this test.

Solution:

To use Neyman-Pearson Lemma in a discrete variable, we first calculate f(x|H1)
f(x|H0)

for each x:

x 1 2 3 4 5 6 7
f(x|H1)
f(x|H0)

6 5 4 3 2 1 0.84

Since the ratio f(x|H1)
f(x|H0)

decreases as x increases, the most powerful test will reject H0 for smaller values of x,

where the likelihood ratio is larger. To control the size at α = 0.04, we observe that P (x ≤ 4|H0) = 0.04, meaning
we reject H0 if x ≤ 4. The probability of a type-II error in this test is P (x > 4|H1) = 0.82.

Question 5. Suppose X is one observation from a population with beta(θ, 1) pdf.

a) For testing H0 : θ ≤ 1 versus H1 : θ > 1, find the size and sketch the power function of the test that
rejects H0 if X > 1

2 .

b) Find the most powerful level α test of H0 : θ = 1 versus H1 : θ = 2.

c) Is there a UMP test of H0 : θ ≤ 1 versus H1 : θ > 1 ? If so, find it. If not, prove so.

Solution:

The power function of the given test is derived as follows:

β(θ) =

󰁝 1

1/2

Γ(θ + 1)

Γ(θ)Γ(1)
xθ−1(1− x)1−1dx

= 1− 1

2θ
.
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The size of a test is the supremum of the power function over the null hypothesis H0, so the size α is:

α = sup
θ≤1

β(θ) =
1

2
.

To construct the most powerful test of H0 : θ = 1 against H1 : θ = 2, we use the Neyman-Pearson Lemma. We
first calculate the likelihood ratio:

λ =
f(x|θ1)
f(x|θ0)

=

1
B(θ1,1)

xθ1−1

1
B(θ0,1)

xθ0−1
∝ xθ1−θ0 (8)

which is monotone increasing in x if θ1 − θ0, i.e. it is MLR. When θ1 = 2 and θ0 = 1, λ ∝ x. According to
the Neyman-Pearson Lemma, we reject H0 if λ > k for some threshold k, which is equivalent to rejecting H0 if
x > k′ for some corresponding k′. The Neyman-Pearson Lemma says this test is the most powerful test. Now we
determine k′ with α.

α = Pθ=1(X > k′) =

󰁝 1

k′

1

B(1, 1)
x1−1(1− x)1−1dx = 1− k′

so the most powerful test is the one we reject H0 if X > 1 − α. Since it is MLR, so there is a UMP test of
H0 : θ ≤ 1 versus H1 : θ > 1 from the Karlin-Rubin theorem. In fact, the rejection region is also X > 1− α.

Remark 1. We now consider testing H0 : θ = θ0 against H1 : θ = θ1 where θ1 > θ0. From equation
(8), we know that the likelihood ratio is given by:

λ(x) ∝ xθ1−θ0 .

This ratio is monotonic in x whenever θ1 > θ0, meaning that rejecting H0 for large values of x
(i.e. when x > k′ for some threshold k′) is optimal. According to the Neyman-Pearson Lemma,
this rejection rule provides the most powerful test (MPT). Importantly, the rejection rule x > k′ is
independent of the specific values of θ1 and θ0, as long as θ1 > θ0.
Thus, this test can be used for any θ1 as long as θ1 > θ0. In fact, if φ is an MPT of size α for testing
H0 : θ = θ0 against any θ1 ∈ Θ1, then φ remains an MPT of size α for testing H0 : θ = θ0 against
H1 : θ ∈ Θ1.
From this discussion, we find that the test φ, which rejects H0 if X > 1 − α, is the uniformly most
powerful test (UMPT) for the following three scenarios:

H0 : θ = 1 versus H1 : θ = 2,

H0 : θ = 1 versus H1 : θ > 1,

H0 : θ ≤ 1 versus H1 : θ > 1.

We can explain this observation through two key points:

1. Under any H0 : θ ∈ Θ0 above, testing θ = 1 against any H1 above is the most difficut (because
θ = 1 is the closest to Θ1). Hence, controlling the type-I error at θ = 1 is sufficient to control
the size.

2. As long as Θ1 is on the same side relative to θ = 1, the test is the same and does not depend
on Θ1. Hence, testing H0 against H1 is equivalent to testing H0 against any simple alternative
hypothesis θ = θ1.

Hence, all three hypothesis testing problems above are reduced to the problem of testing simple
hypotheses.
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Question 6. Let f(x | θ) be the Cauchy scale pdf

f(x | θ) = θ

π

1

θ2 + x2
, −∞ < x < ∞, θ > 0

a) Show that this family does not have an MLR.

b) If X is one observation from f(x | θ), show that |X| is sufficient for θ and that the distribution of |X|
does have an MLR.

Solution:

For θ1 > θ0 > 0 the likelihood ratio is given by

λ =
f(x|θ1)
f(x|θ0)

=
θ1
θ0

θ20 + x2

θ21 + x2
.

Taking its derivative with respect to x, we obtain

∂λ

∂x
=

θ1
θ0

θ21 − θ20󰀃
θ21 + x2

󰀄2x,

which have positive value for x > 0 and negative value for x < 0, hence, λ is not monotone, i.e., this family does
not have an MLR.

Given that f(x | θ) = θ
π

1
θ2+|x|2 , by the factorization theorem, |x| is a sufficient statistic. The pdf of |x| is

f(y | θ) = f(y | θ) = 2θ

π

1

θ2 + y2
, y > 0, θ > 0.

Now, take the derivative of the likelihood ratio of |x| to get

∂λ

∂y
=

θ1
θ0

θ21 − θ20󰀃
θ21 + y2

󰀄2 y > 0, y > 0, θ1 > θ0 > 0.

so |X| has a MLR.

Question 7. LetX1, . . . , Xn be a random sample from the uniform (θ, θ+1) distribution. To testH0 : θ = 0
versus H1 : θ > 0, use the test

reject H0 if Yn ≥ 1 or Y1 ≥ k

where k is a constant, Y1 = min {X1, . . . , Xn} , Yn = max {X1, . . . , Xn}.

a) Determine k so that the test will have size α.

b) Find an expression for the power function of the test in part (a).

c) Prove that the test is UMP level α.

d) Find values of n and k so that the UMP .10 level test will have power at least .8 if θ > 1.

Solution:

We first derive the PDF of Y1 and Yn. The joint PDF is given by:

f(y1, yn) = n(n− 1)(yn − y1)
n−2, θ < y1 ≤ yn < θ + 1.

and the marginal PDF for Y1 and Yn are:

f(y1) =n(1− (y1 − θ))n−1, θ < y1 < θ + 1;

f(yn) =n(yn − θ)n−1, θ < y1 < θ + 1.

8



Under H0, the event Yn ≥ 1 occurs with probability 0, so we compute the significance level α as follows:

α = Pθ=0(Yn ≥ 1 or Y1 ≥ k)

= Pθ=0(Y1 ≥ k)

= Pθ=0(Xi ≥ k for any i = 1 · · ·n)
= (1− k)n (k < 1, otherwise α = 0)

so k = 1− α
1
n .

To find the power of the test, we divide the range of θ into four disjoint intervals: θ ≤ −α
1
n , −α

1
n < θ ≤ 0,

0 < θ ≤ 1− α
1
n , and θ > 1− α

1
n . For each interval, we compute Pθ(Yn ≥ 1 or Y1 ≥ k).

When θ ≤ −α
1
n , we have θ + 1 ≤ k so P (Y1 ≥ k) = 0, hence P (Yn ≥ 1 or Y1 ≥ k) = 0. When −α

1
n < θ ≤ 0,

implying that Pθ(Yn ≥ 1) = 0, so

Pθ(Yn ≥ 1 or Y1 ≥ k) = Pθ(Y1 ≥ k) = (θ + 1− k)n.

For 0 < θ ≤ 1− α
1
n , we have

Pθ(Yn ≥ 1 or Y1 ≥ k) = Pθ(Yn ≥ 1) + Pθ(Y1 ≥ k)− Pθ(Yn ≥ 1, Y1 ≥ k).

We calculate them one by one:

Pθ(Yn ≥ 1) =

󰁝 θ+1

1
n(yn − θ)n−1dyn = 1− (1− θ)n.

Pθ(Y1 ≥ k) =

󰁝 θ+1

k
n(1− (y1 − θ))n−1dy1 = α.

Pθ(Yn ≥ 1, Y1 ≥ k) =

󰁝 θ+1

1

󰁝 yn

k
n(n− 1)(yn − y1)

n−2dy1dyn = (θ + α
1
n )n − α.

Thus
Pθ(Yn ≥ 1 or Y1 ≥ k) = 1− (1− θ)n + 2α− (θ + α

1
n )n.

For θ > 1− α
1
n , it is clear that Pθ(Yn ≥ 1 or Y1 ≥ k) = 1.

Note that
f(x1:n|θ) = 1{θ<y1}1{yn<θ+1} = 1{θ<y1≤yn<θ+1}

by the factorization theorem, (Y1, Yn) are sufficient statistics for θ. We can, therefore apply Corollary 8.3.13 to
find the UMP (Uniformly Most Powerful) test. The likelihood ratio is

λ =
L(y1, yn|θ1)
L(y1, yn|0)

=
1{θ1<y1≤yn<θ+1}
1{0<y1≤yn<1}

.

To illustrate how the value of λ changes with different (y1, yn), we provide two figures, based on θ, in Figure
3 and Figure 4. When θ > 1, λ takes two values (if 0

0 is defined, the other regions take a value of 1). When
0 < θ < 1, it takes three values (with other regions similarly defined as 1).

The rejection decision depends on k and θ. If θ > k, as shown in Figure 5, when λ > 0, we always reject H0,
and when λ < 0, we never reject H0 (the rejection region is y1 > k and yn > 1). In Figure 6, if λ > 1, we always
reject H0, and if λ < 1, we never reject H0.

Thus, by Corollary 8.3.13, the test is uniformly most powerful (UMP) at level α for a given θ. Since θ is
arbitrary, the test is UMP at level α for H0 : θ = 0 versus H1 : θ > 0.

We have known that when θ > 1 − α
1
n , Pθ(Yn ≥ 1 or Y1 ≥ k) = 1, so β(θ) = 1 for any θ > 1 so any n is OK

and k = 1− 0.1
1
n .
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y1

yn yn = y1

1
θ

θ + 1

λ = 0

λ = ∞

Figure 3: θ > 1

y1

yn yn = y1

1

θ

θ + 1

λ = 0

λ = ∞

λ = 1

Figure 4: 0 < θ < 1

y1

yn yn = y1

1
θ

θ + 1

k

λ = 0

λ = ∞

Figure 5: θ > k

y1

yn yn = y1

1

θ

θ + 1

k

λ = 0

λ = ∞

Figure 6: 0 < θ < k

Question 8. Let (X1, Y1) , . . . , (Xn, Yn) be a random sample from a bivariate normal distribution with
parameters µX , µY ,σ

2
X ,σ2

Y , ρ. We are interested in testing

H0 : µX = µY versus H1 : µX ∕= µY

a) Show that the random variables Wi = Xi − Yi are iid N
󰀃
µW ,σ2

W

󰀄
.

b) Show that the above hypothesis can be tested with the statistic

TW =
W̄󰁴
1
nS

2
W

where W̄ = 1
n

󰁓n
i=1Wi and S2

W = 1
(n−1)

󰁓n
i=1

󰀃
Wi − W̄

󰀄2
. Furthermore, show that, under H0, TW ∼

Student’s t with n− 1 degrees of freedom. (This test is known as the paired-sample t test.)

Solution:

We know that (Xi, Yi)
T ∼ N

󰀕󰀃
µX
µY

󰀄
,

󰀕
σ2
X ρσXσY

ρσXσY σ2
X

󰀖󰀖
, then Xi − Yi = (1,−1)(Xi, Yi)

T , which implies

that

Xi − Yi ∼ N

󰀕
(1,−1)

󰀕
µX

µY

󰀖
, (1,−1)

󰀕
σ2
X ρσXσY

ρσXσY σ2
X

󰀖
(1,−1)T

󰀖
.
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i.e. Xi − Yi ∼ N(µW ,σ2
W ) where µW = µX − µY ,σ

2
W = σ2

X + σ2
Y − 2ρσXσY . Clearly, Xi − Yi are independent.

Testing H0 : µX = µY is equivalent to testing H ′
0: µW = µX − µY = 0, so we can base the test on Wi. Using

the likelihood ratio test (LRT) for H ′′
0 : µW = µ0 against H ′′

1 : µW ∕= µ0, we generalize the mean test for a normal
distribution, where µ0 = 0 is a special case in this context.

The likelihood function for (µW ,σ2
W ) is

L(µW ,σ2
W ) = (2πσ2

W )−
n
2 exp

󰀫
− 1

2σ2
W

n󰁛

i=1

(Wi − µW )2

󰀬
.

The unrestricted and H0-restricted MLEs of (µW ,σ2
W ) are (µ̂W , σ̂2

W ) and (µ0, σ̂
2
0), respectively, where

µ̂W = W̄ =
1

n

n󰁛

i=1

Wi, σ̂2
W =

1

n

n󰁛

i=1

(Wi − W̄ )2, σ̂2
0 =

1

n

n󰁛

i=1

(Wi − µ0)
2.

So, the LR is

λ =
L(µ̂W , σ̂2

W )

L(µ0, σ̂2
0)

=

󰀕
σ̂2
0

σ̂2
W

󰀖n
2

=

󰀕󰁓n
i=1(W − W̄ )2 + n(W̄ − µ0)

2

󰁓n
i=1(W − W̄ )2

󰀖n
2

=

󰀳

󰁃1 +
1

n− 1

(W̄−µ0)2

σ2
W /n

󰁓n
i=1(W−W̄ )2

(n−1)σ2
W

󰀴

󰁄

n
2

=

󰀕
1 +

1

n− 1
T 2

󰀖n
2

=

󰀕
1 +

1

n− 1

U2

V 2

󰀖n
2

.

Where

T =
U

V
, U =

√
n(W̄ − µ0)

σW
, V =

󰁴
S2
W

σW
.

Clearly, λ is increasing with T 2. The rejection region is T 2 > c ⇐⇒ |T | > c′ . In fact |T | is |TW |. Under H0,
U ∼ N(0, 1) and (n− 1)V 2 ∼ χ2

n−1 and they are independent, hence TW = T = U
V ∼ tn−1.

11



Remark 2. In addition to testing using TW , we can also use T 2
W which follows a F(1,n−1) distribution. The

power function for this test can be derived as follows:

β(µW ,σ2
W ) = PµW ,σ2

W
{|TW | > c}

= PµW ,σ2
W

󰀝
|U |
V

> c

󰀞

= PµW ,σ2
W

󰀕√
n(W̄ − µ0)

σW
< −cV

󰀖
+ PµW ,σ2

W

󰀕√
n(W̄ − µ0)

σW
> cV

󰀖

= PµW ,σ2
W

󰀕√
n(W̄ − µW )

σW
< −cV +

θ0 − µW

σ/
√
n

󰀖
+ PµW ,σ2

W

󰀕√
n(W̄ − µ0)

σW
> cV +

θ0 − µW

σ/
√
n

󰀖

Note that, generally, Z :=
√
n(W̄ − µW )/σW ∼ N(0, 1) and V 2 ∼ χ2

n−1/(n − 1) are independent. The
distribution of Z, V are free of µ. By the law of iterative expectations, we have

PµW ,σ2
W

󰀕√
n(W̄ − µW )

σW
< −cV +

θ0 − µW

σ/
√
n

󰀖
=E

󰀝
PµW ,σ2

W

󰀕√
n(W̄ − µW )

σW
< −cV +

θ0 − µW

σ/
√
n

| V
󰀖󰀞

=EΦ

󰀕
−cV +

θ0 − µW

σ/
√
n

󰀖

PµW ,σ2
W

󰀕√
n(W̄ − µW )

σW
> cV +

θ0 − µW

σ/
√
n

󰀖
=E

󰀝
PµW ,σ2

W

󰀕√
n(W̄ − µW )

σW
> cV +

θ0 − µW

σ/
√
n

| V
󰀖󰀞

=1− EΦ

󰀕
cV +

θ0 − µW

σ/
√
n

󰀖

So

β(µW ,σ2
W ) = 1 + EΦ

󰀕
−cV +

θ0 − µW

σ/
√
n

󰀖
− EΦ

󰀕
cV +

θ0 − µW

σ/
√
n

󰀖

Figure 7 illustrates this relationship. As seen in the figure, the power increases as ρ increases, which is due
to the fact that the variance of W decreases as ρ grows.

Figure 7: Power of t-test with different ρ
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Question 9. Let (X1, Y1) , . . . , (Xn, Yn) be a random sample from a bivariate normal distribution with
parameters µX , µY ,σ

2
X ,σ2

Y , ρ

a) Derive the LRT of

H0 : µX = µY versus H1 : µX ∕= µY

b) Show that the test derived in part (a) is equivalent to the paired t test of Exercise 8.39.

(Hint: Straightforward maximization of the bivariate likelihood is possible but somewhat nasty. Filling in
the gaps of the following argument gives a more elegant proof.) Make the transformation u = x−y, v = x+y.
Let f(x, y) denote the bivariate normal pdf, and write

f(x, y) = g(v | u)h(u)

where g(v | u) is the conditional pdf of V given U , and h(u) is the marginal pdf of U . Argue that (1) the
likelihood can be equivalently factored and (2) the piece involving g(v | u) has the same maximum whether
or not the means are restricted. Thus, it can be ignored (since it will cancel) and the LRT is based only on
h(u). However, h(u) is a normal pdf with mean µX − µY , and the LRT is the usual one-sample t test, as
derived in Exercise 8.38.

Before proceeding with the proof, we introduce a helpful lemma:

Lemma 1 (Conditional distribution of normal). Let X =

󰀗
X(1)

X(2)

󰀘r

p−r

∼ Np(µ,Σ)(Σ > 0), then the

distribution of X(1) conditioning on X(2) is
󰀓
X(1) | X(2)

󰀔
∼ Nr (µ1·2,Σ11·2)

where
µ1·2 =µ(1) + Σ12Σ

−1
22

󰀓
x(2) − µ(2)

󰀔
;

Σ11·2 =Σ11 − Σ12Σ
−1
22 Σ21.

X(1) and X(2) are independent. The proof is provided in Appendix A.

Solution:

Denote the PDF of (X,Y ) by f(x, y|θ), where θ = (µX , µY ,σ
2
X ,σ2

Y , ρ)
T . Then the likelihood of θ is:

L1(θ|x1:n, y1:n) =
n󰁜

i=1

f(xi, yi|θ)

We now apply the transformation h as follows:

h :(x, y) 󰀁→ (u, v)

u = x+ y

v = x− y

Denote the distribution of (U, V ) by g(u, v). By the transformation theorem, we have f(x, y|θ) = g(h(x, y))
󰀏󰀏󰀏∂(u,v)∂(x,y)

󰀏󰀏󰀏,
and (U, V ) is also bivariate normal:

󰀕
U
V

󰀖
∼ N

󰀗󰀕
µX + µY

µX − µY

󰀖
,

󰀕
Σ11 Σ12

Σ12 Σ22

󰀖󰀘
.

Since h is a one-to-one mapping, the likelihood can be written as:

L2(θ|v1:n, u1:n) =
n󰁜

i=1

g(vi, ui|θ) =
n󰁜

i=1

g(h(xi, yi)|θ) = |∂(u, v)
∂(x, y)

|−n
n󰁜

i=1

f(xi, yi|θ) ∝ L1(θ|x1:n, y1:n),

which implies that
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argmax
θ

L2(θ|v1:n, u1:n) = argmax
θ

L1(θ|x1:n, y1:n).

Now consider the likelihood ratio

λ =
supθ∈Θ L1(θ|x1:n, y1:n)
supθ∈Θ0

L1(θ|x1:n, y1:n)

=
supθ∈Θ L2(θ|u1:n, v1:n)
supθ∈Θ0

L2(θ|u1:n, v1:n)

=
supθ∈Θ

󰁔n
i=1 g(vi, ui|θ)

supθ∈Θ0

󰁔n
i=1 g(vi, ui|θ)

=
supθ∈Θ

󰁔n
i=1 g(ui|vi)

󰁔n
i=1 g1(vi)

supθ∈Θ0

󰁔n
i=1 g(ui|vi)

󰁔n
i=1 g1(vi)

We will now show that the maximum of
󰁔n

i=1 g(ui|vi, θ) is the same whether or not the means are restricted. Here,
g(u, v|θ) is the conditional distribution of U given V , and g1(v) is the marginal distribution of V .

To maximize
󰁔n

i=1 g(ui|vi, θ)g1(vi), we take the logarithm:

log

n󰁜

i=1

g(ui|vi, θ)g1(vi) =
n󰁛

i=1

log g(ui|vi, θ) +
n󰁛

i=1

log g1(vi) (9)

From Lemma 1, we know:
(U | V ) ∼ N (µ1·2,Σ11·2) ,

where
µ1·2 =µX + µY + Σ12Σ

−1
22 (v − µX + µY ) := kv + b;

Σ11·2 =Σ11 − Σ12Σ
−1
22 Σ21 := σ2.

Since U |V and V are independent, we can consider each part of the log-likelihood separately. The unrestricted
maximum likelihood estimate (MLE) is found by:

arg max
k,b,σ2

n󰁛

i=1

log g(ui|vi, θ) = arg max
k,b,σ2

−n

2
log 2πσ2 − 1

2σ2

n󰁛

i=1

(ui − kvi − b)2 (10)

Under H0,
µ1·2 =2µX + Σ12Σ

−1
22 v := kv + b′;

Σ11·2 =Σ11 − Σ12Σ
−1
22 Σ21 := σ2.

the restricted MLE becomes:

arg max
k,b′,σ2

n󰁛

i=1

log g(ui|vi, θ) = arg max
k,b′,σ2

−n

2
log 2πσ2 − 1

2σ2

n󰁛

i=1

󰀃
ui − kvi − b′

󰀄2
. (11)

Since equation (11) and equation (10) have the same form, they yield the same maximum, implying:

λ =
supθ∈Θ

󰁔n
i=1 g1(vi)

supθ∈Θ0

󰁔n
i=1 g1(vi)

which is based only on x− y. This completes the desired result.

Remark 3. The equation (11) and equation (10) are the solutions for linear regression using likelihood
methods.
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Question 10. The assumption of equal variances, which was made in Exercise 8.41, is not always tenable.
In such a case, the distribution of the statistic is no longer a t. Indeed, there is doubt as to the wisdom
of calculating a pooled variance estimate. (This problem of making inference on means when variances are
unequal, is, in general, quite a difficult one. It is known as the Behrens-Fisher Problem.) A natural test to
try is the following modification of the two-sample t test: Test

H0 : µX = µY versus H1 : µX ∕= µY

where we do not assume that σ2
X = σ2

Y , using the statistic

T ′ =
X̄ − Ȳ󰁵󰀓
S2
X
n +

S2
Y
m

󰀔

where

S2
X =

1

n− 1

n󰁛

i=1

󰀃
Xi − X̄

󰀄2
and S2

Y =
1

m− 1

m󰁛

i=1

󰀃
Yi − Ȳ

󰀄2

The exact distribution of T ′ is not pleasant, but we can approximate the distribution using Satterthwaite’s
approximation (Example 7.2.3).

a) Show that
S2
X
n +

S2
Y
m

σ2
X
n +

σ2
Y
m

∼ χ2
ν

ν
(approximately)

where ν can be estimated with.

ν̂ =

󰀓
S2
X
n +

S2
Y
m

󰀔2

S4
X

n2(n−1)
+

S4
Y

m2(m−1)

b) Argue that the distribution of T ′ can be approximated by a t distribution with v̂ degrees of freedom.

c) Re-examine the data from Exercise 8.41 using the approximate t test of this exercise; that is, test if
the mean age of the core is the same as the mean age of the periphery using the T ′ statistic.

d) Is there any statistical evidence that the variance of the data from the core may be different from the
variance of the data from the periphery? (Recall Example 5.4.1.)

Solution:

S2
X
n +

S2
Y
m

σ2
X
n +

σ2
Y
m

=
σ2
X

n(n− 1)
󰀓
σ2
X
n +

σ2
Y
m

󰀔 (n− 1)S2
X

σ2
X

+
σ2
Y

m(m− 1)
󰀓
σ2
X
n +

σ2
Y
m

󰀔 (m− 1)S2
Y

σ2
Y

:=a1Y1 + a2Y2

where Y1 =
(n−1)S2

X

σ2
X

∼ χ2
n−1 and Y2 =

(m−1)S2
Y

σ2
Y

∼ χ2
m−1 and they are independent. According to Satterthwaites

approximation, if Yi ∼ χ2
ri and they are independent, then

󰁓
i aiYi ∼

χ2
ν̂
ν̂ , where ν̂ =

(
󰁓

i aiYi)
2

󰁓
i a

2
i Y

2
i /ri

. Thus,

S2
X
n +

S2
Y
m

σ2
X
n +

σ2
Y
m

∼
χ2
ν̂

ν̂
, where ν̂ =

󰀓
S2
X
n +

S2
Y
m

󰀔2

S4
X

n2(n−1)
+

S4
Y

m2(m−1)

.
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The statistic T ′ can be written as

T ′ = T ′ =
X̄ − Ȳ󰁵󰀓
S2
X
n +

S2
Y
m

󰀔 =
X̄ − Ȳ󰁵󰀓
S2
X
n +

S2
Y
m

󰀔 =
(X̄ − Ȳ )/

󰁴
σ2
X/n+ σ2

Y /m󰁵
(S2

X/n+S2
Y /m)

(σ2
X/n+σ2

Y /m)

,

where (X̄−Ȳ )/
󰁴

σ2
X/n+ σ2

Y /m ∼ N(0, 1) and

󰁵
(S2

X/n+S2
Y /m)

(σ2
X/n+σ2

Y /m)
∼ χ2

ν̂
ν̂ approximately. Thus, T ′ can be approximated

by a t distribution with v̂ degrees of freedom.
Upon examining the data, the p-value is greater than 0.05, so under the significance level of 0.05, we cannot

reject H0.

1 > Core <- c(1294 , 1279, 1274, 1264, 1263, 1254, 1251, 1251, 1248, 1240, 1232, 1220, 1218, 1210)
2 > Periphery <- c(1284 , 1272, 1256, 1254, 1242, 1274, 1264, 1256, 1250)
3 > t.test(Core ,Periphery ,var.equal = FALSE)
4

5 Welch Two Sample t-test
6

7 data: Core and Periphery
8 t = -1.4599, df = 20.636 , p-value = 0.1594
9 alternative hypothesis: true difference in means is not equal to 0

10 95 percent confidence interval:
11 -27.841668 4.889287
12 sample estimates:
13 mean of x mean of y
14 1249.857 1261.333

To compare the variance of two populations, we derive the LRT for H0 : σX = σY against H1 : σX ∕= σY .
First, the likelihood of µX , µY ,σ

2
X ,σ2

Y is

L(µX , µY ,σ
2
X ,σ2

Y | x1:n, y1:m) =
󰀃
2πσ2

X

󰀄−n
2
󰀃
2πσ2

Y

󰀄−m
2 exp

󰀫
− 1

2σ2
X

n󰁛

i=1

(xi − µX)2 − 1

2σ2
Y

m󰁛

i=1

(yi − µY )
2

󰀬

In the unrestricted scenario, maximizing the likelihood is equivalent to finding the maxima of L(µX ,σ2
X) and

L(µY ,σ
2
Y ) individually. So the unrestricted MLEs of µX , µY ,σ

2
X ,σ2

Y are

µ̂X = x̄, µ̂Y = ȳ, σ̂2
X =

1

n

n󰁛

i=1

(xi − x̄)2, σ̂2
Y =

1

m

m󰁛

i=1

(yi − ȳ)2,

respectively. Under H0, the restricted MLEs of µX and µY are

µ̂X = x̄, µ̂Y = ȳ,

since maximizing µX does not involve µY and vice visa. Finally the restricted MLE of σ2 can be derived by
derivating logL(x̄, ȳ,σ2):

∂ logL(x̄, ȳ,σ2)

∂σ2
= −m+ n

2

1

σ2
+

1

2σ4

󰀣
n󰁛

i=1

(xi − x̄)2 +

m󰁛

i=1

(yi − ȳ)2

󰀤
set
= 0,

which implies that

σ̂2 =
1

m+ n

󰀣
n󰁛

i=1

(xi − x̄)2 +

m󰁛

i=1

(yi − ȳ)2

󰀤
.

Further ∂ logL(x̄,ȳ,σ2)
∂(σ2)2

< 0, so σ̂2 is indeed maxima. So, the LRT can be written as:

λ =
L(µ̂X , µ̂Y , σ̂

2
X , σ̂2

Y )

L(µ̂X , µ̂Y , σ̂2)
=

(σ̂2)
n
2 (σ̂2)

m
2

(σ̂2
X)

n
2 (σ̂2

Y )
m
2

=
n

n
2 m

m
2

(n+m)
n+m

2

󰀕
1 +

󰁓m
i=1(yi − ȳ)2󰁓n
i=1(xi − x̄)2

󰀖n
2
󰀕
1 +

󰁓n
i=1(xi − x̄)2󰁓m
i=1(yi − ȳ)2

󰀖m
2
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=
n

n
2 m

m
2

(n+m)
n+m

2

󰀳

󰁃1 +
m− 1

n− 1

󰁓m
i=1(yi−ȳ)2

m−1󰁓n
i=1(xi−x̄)2

n−1

󰀴

󰁄

n
2
󰀳

󰁃1 +
n− 1

m− 1

󰁓n
i=1(xi−x̄)2

n−1󰁓m
i=1(yi−ȳ)2

m−1

󰀴

󰁄

m
2

=
n

n
2 m

m
2

(n+m)
n+m

2

󰀕
1 +

m− 1

n− 1

σ̂2
Y

σ̂2
X

󰀖n
2
󰀕
1 +

n− 1

m− 1

σ̂2
X

σ̂2
Y

󰀖m
2

=
n

n
2 m

m
2

(n+m)
n+m

2

󰀕
1 +

m− 1

n− 1

1

F

󰀖n
2
󰀕
1 +

n− 1

m− 1
F

󰀖m
2

let
σ̂2
X

σ̂2
Y

= F > 0.

Now we show the monotonicity of log λ with F :

∂ log λ

∂F
=

m(n− 1)(F − 1)

2(n− 1)F 2 + 2(m− 1)F

so λ is increasing in (1,+∞) and decreasing in (0, 1). To get a size α test, we try to find k1 and k2 satisfying

PH0(F < k1 or F > k2) = α and λ(k1) = λ(k2) (12)

Under H0 F ∼ F(n−1,m−1), but equation (12) is difficult to find a close form, we can calculate it numerically or use
k1 = F(n−1,m−1)(α/2) and k′1 = F(m−1,n−1)(α/2), where F(n−1,m−1)(·) is the lower quantile function. According to
the results below, we can’t reject H0.

1 > n=length(Core)
2 > m=length(Periphery)
3 > alpha =.05
4 > (k1 <- qf(alpha/2,n-1,m-1))
5 [1] 0.2951605
6 > (k2 <- qf(1-alpha/2,n-1,m-1))
7 [1] 4.16217
8 > (F=var(Core)/var(Periphery))
9 [1] 3.360015 ##k1<F<k2 so do not reject H0

10 > 2*min(1-pf(F,n-1,m-1),pf(F,n-1,m-1))#p-value
11 [1] 0.09200881 ##p-value tells us the same that do not reject H0

Question 11. Let X1, . . . , Xn be iid N
󰀃
θ,σ2

󰀄
,σ2 known, and let θ have a double exponential distribution,

that is, π(θ) = e−|θ|/a/(2a), a known. A Bayesian test of the hypotheses H0 : θ ≤ 0 versus H1 : θ > 0 will
decide in favor of H1 if its posterior probability is large.

a) For a given constant K, calculate the posterior probability that θ > K, that is,
P (θ > K | x1, . . . , xn, a).

b) Find an expression for lima→∞ P (θ > K | x1, . . . , xn, a).
c) Compare your answer in part (b) to the p-value associated with the classical hypothesis test.

To begin with, we introduce a lemma and the definition of the truncated normal distribution.

Lemma 2 (Normal kernel). For any A > 0 and B ∈ R,we have

f(θ) ∝ exp

󰀝
−1

2
(Aθ2 − 2Bθ)

󰀞
=⇒ θ ∼ N

󰀕
B

A
,
1

A

󰀖
.

This is straightforward to prove, so we omit the details here.

Definition 1. Suppose X has a normal distribution with mean µ and variance σ2 and lies within the
interval (a, b), with −∞ ≤ a < b ≤ ∞. Then X conditional on a < X < b has a truncated normal
distribution, denoted by TN(µ,σ2, a, b)
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Lemma 3.
󰁝 b

a
exp

󰀝
−1

2
(Aθ2 − 2Bθ)

󰀞
dθ =exp

󰀝
B2

2A

󰀞󰁳
2π(1/A)Φ (Ab−B)− Φ (Aa−B)

See Appendix B for the proof.

Solution:

Now we calculate the posterior of θ:

π(θ|x1:n) ∝ π(θ)× f(x1:n|θ)

=
1

2a
exp

󰀝
− |θ|

a

󰀞
×

󰀕
1

2πσ2

󰀖n
2

exp

󰀫
− 1

2σ2

n󰁛

i=1

(xi − θ)2

󰀬

=
1

2a
exp

󰀝
− |θ|

a

󰀞
×

󰀕
1

2πσ2

󰀖n
2

exp

󰀫
− 1

2σ2

n󰁛

i=1

(xi − x̄)2 − 1

2σ2
n(x̄− θ)2

󰀬

∝ exp

󰀝
− |θ|

a
− 1

2σ2
n(x̄− θ)2

󰀞

∝ exp

󰀝
− |θ|

a
+

2nx̄θ

2σ2
− θ2

2σ2

󰀞

= exp

󰀝
−1

2

󰀕
n

σ2
θ2 − 2(

nx̄

σ2
− 1

a
)θ

󰀖󰀞
1{θ>0} + exp

󰀝
−1

2

󰀕
n

σ2
θ2 − 2(

nx̄

σ2
+

1

a
)θ

󰀖󰀞
1{θ≤0}

Let

B =

󰁝 +∞

−∞
exp

󰀝
−1

2

󰀕
n

σ2
θ2 − 2(

nx̄

σ2
− 1

a
)θ

󰀖󰀞
1{θ>0} + exp

󰀝
−1

2

󰀕
n

σ2
θ2 − 2(

nx̄

σ2
+

1

a
)θ

󰀖󰀞
1{θ≤0}dθ

=

󰁝 +∞

0
exp

󰀝
−1

2

󰀕
n

σ2
θ2 − 2(

nx̄

σ2
− 1

a
)θ

󰀖󰀞
dθ +

󰁝 0

−∞
exp

󰀝
−1

2

󰀕
n

σ2
θ2 − 2(

nx̄

σ2
+

1

a
)θ

󰀖󰀞
dθ

=exp

󰀝
n(nx̄/σ2 − 1/a)2

2σ2

󰀞󰁳
2πσ2/n

󰀃
1− Φ(1/a− nx̄/σ2)

󰀄

+ exp

󰀝
n(nx̄/σ2 + 1/a)2

2σ2

󰀞󰁳
2πσ2/nΦ(−1/a− nx̄/σ2)

:=B1 +B2

Thus, the posterior distribution is

π(θ|x1:n) =
1

B
exp

󰀝
−1

2

󰀕
n

σ2
θ2 − 2(

nx̄

σ2
− 1

a
)θ

󰀖󰀞
1{θ>0} +

1

B
exp

󰀝
−1

2

󰀕
n

σ2
θ2 − 2(

nx̄

σ2
+

1

a
)θ

󰀖󰀞
1{θ≤0}

In fact π(θ|x) is a mixed distribution, since

π(θ|x) = π(θ|x, θ < 0)P (θ < 0) + π(θ|x, θ > 0)P (θ > 0)

Now π(θ|x, θ < 0) and π(θ|x, θ > 0) are truncated normal distribuion TN(x̄ + σ2

na ,
σ2

n ,−∞, 0) and TN(x̄ −
σ2

na ,
σ2

n , 0,+∞), respectively, (Lemma 2 confirms that they are normal and truncated). And P (θ > 0) = B1/(B1 +
B2), P (θ < 0) = B2/(B1 +B2). To calculate P (θ > K | x1, . . . , xn, a), we integrate π(θ|x1:n) from K to +∞, and
for K > 0

P (θ > K | x1, . . . , xn, a) =
1

B1 +B2

󰁝 +∞

K
exp

󰀝
−1

2

󰀕
n

σ2
θ2 − 2(

nx̄

σ2
− 1

a
)θ

󰀖󰀞
dθ

=
1

B1 +B2
exp

󰀝
n(nx̄/σ2 − 1/a)2

2σ2

󰀞󰁳
2πσ2/n

󰀃
1− Φ(1/a+ n(K − x̄)/σ2)

󰀄 (13)
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As a → ∞,

lim
a→∞

π(θ|x) = lim
a→∞

TN(x̄+
σ2

na
,
σ2

n
,−∞, 0)P (θ < 0) + lim

a→∞
TN(x̄− σ2

na
,
σ2

n
, 0,+∞)P (θ > 0)

=TN(x̄,
σ2

n
,−∞, 0)P (θ < 0) + TN(x̄,

σ2

n
, 0,+∞)P (θ > 0)

=N(x̄,
σ2

n
)

so

lim
a→∞

P (θ > K | x1, . . . , xn, a) = lim
a→∞

󰁝 ∞

K
π(θ|x1:n)dx

=

󰁝 ∞

K
lim
a→∞

π(θ|x1:n)dx

=

󰁝 ∞

K
N(x̄,

σ2

n
)dθ = 1− Φ(

√
n(K − x̄)

σ
),

which is 1−p-value when K = 0 (Let a → ∞ in equation (13), the same results can be obtained). With a increase,
the distribution of the prior π(θ) is more and more flat so that the prior information is intending to 0. When
a → ∞, this is the so-called non-informative prior.

Remark 4. If we use Bayes inference in the weighted loss function :

L(θ, φ̂) = a01(φ < φ̂) + a11(φ > φ̂) =

󰀻
󰁁󰀿

󰁁󰀽

a0 if φ = 0 and φ̂ = 1;

a1 if φ = 1 and φ̂ = 0;

0 otherwise,

where a0, a1 ≥ 0. The Bayes estimator is

φ̂π = 1

󰀝
p̂0 <

a1
a0 + a1

󰀞
= 1

󰀝
p̂1 ≥

a0
a0 + a1

󰀞
, where p̂i = P (θ ∈ Θi|x).

We can interpret it in terms of frequentist’s languages:

• p̂0 plays the role of the p-value, and α = a1
a0+a1

plays the role of the nominal size.

• α = a1
a0+a1

= 0.05 means that the loss of committing type-I error is 19 times that of committing
type-II error.

If we use α = a1
a0+a1

= 0.05, the classical test is the same as our Bayes one once we use non-informative
prior.

Question 12. Here is another common interpretation of p-values. Consider a problem of testing H0 versus
H1. Let W (X) be a test statistic. Suppose that for each α, 0 ≤ α ≤ 1, a critical value cα can be chosen so
that {x : W (x) ≥ cα} is the rejection region of a size α test of H0. Using this family of tests, show that the
usual p-value p(x), defined by (8.3.9), is the smallest α level at which we could reject H0, having observed
the data x.

Solution:

By definition
α = sup

θ∈Θ0

P (W (X) ≥ cα)

p(x) = sup
θ∈Θ0

P (W (X) ≥ W (x))

Here W (X) is a statistic such that a large value of W gives evidence that H1 is true. If α < p(x), then W (x) < cα,
which show that we can not reject H0. On the other hand, α ≥ p(x) implies that W (x) ≥ cα, so we can reject H0.
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Question 13. Consider testing H0 : θ ∈
󰁖k

j=1Θj . For each j = 1, . . . , k, let pj(x) denote a valid p-value

for testing H0j : θ ∈ Θj . Let p(x) = max1≤j≤k pj(x).

a) Show that p(X) is a valid p -value for testing H0.

b) Show that the α level test defined by p(X) is the same as an α level IUT defined in terms of individual
tests based on the pj(x)s.

Solution:

P (p(X) ≤ α) = P (

k󰁟

j=1

pj(X) ≤ α) ≤ max
1≤j≤k

P (pj(X) ≤ α) ≤ α

The last inequality holds since pj(x)’s are valid p-values.
The rejection region of a level α test defined by p(X) is

{X : p(X) ≤ α} =

󰀻
󰀿

󰀽X :

k󰁟

j=1

(pj(X) ≤ α)

󰀼
󰁀

󰀾

which shows that it is the same as an α level IUT defined in terms of individual tests based on the pj(x)s

Question 14. Consider the hypothesis testing problem and loss function given in Example 8.3.31, and let
σ = n = 1. Consider tests that reject H0 if X < −zα+θ0. Find the value of α that minimizes the maximum
value of the risk function, that is, that yields a minimax test.

Solution:

The risk function is:

R(θ, δ) =L(θ, a0)(1− β(θ) + L(θ, a1)β(θ)

=8Φ(−zα + θ0 − θ)1{θ≤θ0} + 3(1− Φ(−zα + θ0 − θ))1{θ>θ0}.

Here zα is the upper α quantile of standard normal distribution. We find that R(θ, δ) increase in (−∞, θ] and
decrease in (θ,+∞). Hence, the maximum value of the risk function occurs at θ0. With α grove, limθ→θ+0

R(θ, δ)

incline and limθ→θ−0
R(θ, δ) increase. So the minimum risk is α satisfies

8Φ(−zα) = lim
θ→θ−0

R(θ, δ) = lim
θ→θ+0

R(θ, δ) = 3− 3Φ(−zα) =⇒ Φ(−zα) =
3

11

so α = 3
11 .
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Appendix

A Proof of Lemma 1

Let

Z =

󰀗
X(1) − Σ12Σ

−1
22 X

(2)

X(2)

󰀘
=

󰀗
Ir −Σ12Σ

−1
22

O Ip−r

󰀘 󰀗
X(1)

X(2)

󰀘
= BX.

By the property of multi-normal distribution, we have

Z =

󰀗
Z(1)

Z(2)

󰀘
∼ Np

󰀕󰀗
µ(1) − Σ12Σ

−1
22 µ

(2)

µ(2)

󰀘
,

󰀗
Σ11·2 O
O Σ22

󰀘󰀖

so Z(1),Z(2) are independent and Z(2) = X(2). The joint distribution of Z is

g
󰀓
z(1), z(2)

󰀔
= g1

󰀓
z(1)

󰀔
g2

󰀓
z(2)

󰀔
= g1

󰀓
z(1)

󰀔
f2

󰀓
z(2)

󰀔
, (since Z(2) = X(2))

We can derive the PDF of X by Y :

f
󰀓
x(1), x(2)

󰀔
= g(Bx)

󰀏󰀏󰀏󰀏
∂z

∂x

󰀏󰀏󰀏󰀏
+

= g1

󰀓
x(1) − Σ12Σ

−1
22 x

(2)
󰀔
g2

󰀓
x(2)

󰀔 󰀏󰀏󰀏󰀏
∂z

∂x

󰀏󰀏󰀏󰀏
+

= g1

󰀓
x(1) − Σ12Σ

−1
22 x

(2)
󰀔
f2

󰀓
x(2)

󰀔
since |B| = 1

so

f1

󰀓
x(1) | x(2)

󰀔
=
f
󰀃
x(1), x(2)

󰀄

f2
󰀃
x(2)

󰀄

=g1

󰀓
x(1) − Σ12Σ

−1
22 x

(2)
󰀔

=
1

(2π)r/2 |Σ11·2|1/2
exp

󰀗
−1

2

󰀓
x(1) − µ1·2

󰀔′
Σ−1
11·2

󰀓
x(1) − µ1·2

󰀔󰀘

where
µ1·2 =µ(1) + Σ12Σ

−1
22

󰀓
x(2) − µ(2)

󰀔
;

Σ11·2 =Σ11 − Σ12Σ
−1
22 Σ21.

B Proof of Lemma 3

󰁝 b

a
exp

󰀝
−1

2
(Aθ2 − 2Bθ)

󰀞
=

󰁝 b

a
exp

󰀝
−A

2
(θ2 − 2

B

A
θ)

󰀞
dθ

=

󰁝 b

a
exp

󰀝
−A

2
(θ − B

A
)2 +

B2

2A

󰀞
dθ

=exp

󰀝
B2

2A

󰀞󰁳
2π(1/A)

󰁝 b

a

1󰁳
2π(1/A)

exp

󰀝
− 1

2(1/A)
(θ2 − B

A
)2
󰀞
dθ

=exp

󰀝
B2

2A

󰀞󰁳
2π(1/A)P (a < θ < b) (here θ ∼ N

󰀕
B

A
,
1

A

󰀖
)

= exp

󰀝
B2

2A

󰀞󰁳
2π(1/A)P

󰀣
a− B

A
1
A

< Z <
b− B

A
1
A

󰀤
(here Z ∼ N(0, 1))

= exp

󰀝
B2

2A

󰀞󰁳
2π(1/A)Φ (Ab−B)− Φ (Aa−B)
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